On the Zero-Set of Real Polynomials in Non-Separable Banach Spaces
نویسندگان
چکیده
منابع مشابه
Polynomials and Identities on Real Banach Spaces
In our present paper we study the duality theory and linear identities for real polynomials and functions on Banach spaces, which allows for a unified treatment and generalization of some classical results in the area. The basic idea is to exploit point evaluations of polynomials, as e.g. in [Rez93]. As a by-product we also obtain a curious generalization of the well-known Hilbert lemma on the ...
متن کاملEvolution inclusions in non separable Banach spaces
We study a Cauchy problem for non-convex valued evolution inclusions in non separable Banach spaces under Filippov type assumptions. We establish existence and relaxation theorems.
متن کاملNon - separable Banach spaces with non - meager Hamel basis
We show that an infinite-dimensional complete linear space X has: • a dense hereditarily Baire Hamel basis if |X| ≤ c; • a dense non-meager Hamel basis if |X| = κ = 2 for some cardinal κ. According to Corollary 3.4 of [BDHMP] each infinite-dimensional separable Banach space X has a non-meager Hamel basis. This is a special case of Theorem3.3 of [BDHMP], asserting that an infinite-dimensional Ba...
متن کاملLfc Bumps on Separable Banach Spaces
In this note we construct a C∞-smooth, LFC (Locally depending on Finitely many Coordinates) bump function, in every separable Banach space admitting a continuous, LFC bump function.
متن کاملNon Dentable Sets in Banach Spaces with Separable Dual
A non RNP Banach space E is constructed such that E∗ is separable and RNP is equivalent to PCP on the subsets of E. The problem of the equivalence of the Radon-Nikodym Property (RNP) and the Krein Milman Property (KMP) remains open for Banach spaces as well as for closed convex sets. A step forward has been made by Schachermayer’s Theorem [S]. That result states that the two properties are equi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Publications of the Research Institute for Mathematical Sciences
سال: 2007
ISSN: 0034-5318
DOI: 10.2977/prims/1201012038